Heuristic Strategies for the Knight Tour Problem

Luis Paris
Institute for Advance Education in Geospatial Sciences
The University of Mississippi
lparis@olemiss.edu

Abstract
This paper presents three heuristic functions that aim to reduce the search cost for the knight tour problem. The first heuristic, \(h_{1a} \), is an interesting case of study that illustrates heuristic analysis, although it fails to obtain solutions. Heuristic \(h_2 \) is an enhancement of the Warnsdorff method, discussed as heuristic \(h_{1b} \). All heuristics are used in conjunction with a greedy algorithm to decide which node to expand next on a best-first basis. Tests show that heuristics \(h_{1b} \) and \(h_2 \) narrow the search space considerably, in most cases to \(O(N^2) \) time when no backtracking occurs. However, the Warnsdorff method, \(h_{1b} \), fails on some boards, sharply declining as \(N \) grows larger. Heuristic \(h_2 \) adds a new criterion to address this issue, being capable of finding complete tours on very large boards in \(O(N^2) \).

1. Introduction
The knight tour problem is another interesting puzzle among the domain of chess problems - another one being the famous 8-Queens problem. However, unlike the latter with only 192 arrangements on an 8x8 board, the number of solutions to the knight tour problem becomes even larger and more intractable as \(N \), the dimension of the board, increases. For instance, while for \(N = 5 \) there are only 304 solutions taken in just a few seconds, on a 6x6 board about half an hour is required to get the 524,486 solutions\(^1\). For \(N = 8 \), the number of solutions grows incredibly large, with 33,439,123,484,294 possible tours, obtained after running an enumeration program on 20 Sun Workstations for about 4 months [1]. However, later an error was presumed to be in the calculation since the number of tours must be, at least, divisible by 4. Mordecki [2] suggests a much higher upper bound of \(1.305 \times 10^{35} \), and states that it is divisible by 8.

The original knight tour problem can be stated like this: Place a knight on an arbitrary square of the chessboard and visit every other square exactly once by performing knight moves until all 64 squares have been visited. The problem can be extended to \(NxN \) boards, of course, completing a tour when all \(NxN \) squares have been visited. Fig. 1 shows two different solutions on a regular 8x8 board.

The first recorded tours, depicted in Fig. 1, date back from 840AD when they were found in an Arabic manuscript [3]. In 1725, the knight tour problem seems to have been rediscovered and studied in Europe by many mathematicians, including Euler [4], without knowledge of the medieval work. However, it wasn’t until the advent of computers when other algorithmic methods became available for testing.

Different problem classifications can be made from the knight tour problem. The number of possible tours that can be arranged in an \(NxN \) board is just one of them. Another one is finding particular tours that exhibit some esthetic property such as symmetry, like the one on Fig. 2, or tours that meet some particular requirement such as reentrancy, also called closed, cyclic, or reentrant tours. Note that the second tour in Fig. 1 is reentrant. Another type of problem, more suitable for large boards, is simply finding one solution, any complete tour. As \(N \) grows large, the total number of possible tours a knight can make on an \(NxN \) board is no longer interesting due to the exponential complexity of the search space. However finding any solution among this vast universe of sequences, and reducing the cost involved in doing so, is interesting.

\[\text{Fig. 1. First two recorded tours on an 8x8 chessboard [7]} \]

\[\text{Fig. 2. One symmetric, re-entrant, 8x8 tour [8]} \]

In this paper, two of these problem types are addressed. First, the enumeration problem is implemented using a depth-first search approach to enumerate all possible tours on a generic board. Of course due to the exponential complexity of the search space, this is only tractable for small boards (\(N<8 \)). Then another, perhaps more interesting problem is addressed: Finding any tour on a particular board, especially a large one, starting from a user selected square. This is achieved by implementing a greedy informed search algorithm with a particular heuristic as the evaluation function.

\(^1\) On an Intel Pentium 4 CPU, running at 1.8GHz, with 1GB of RAM.
2. Problem Formulation

The knight tour problem, at least in its original inception, is a search problem whose path cost is of no interest in terms of cost minimization. Unlike the Traveling Salesman, the knight tour problem has no associated path cost to minimize. Any sequence of \(NxN\) moves that reaches a goal state is a perfectly valid solution. In other words, only the final state counts when performing the goal test. Solutions, if they exist, must reside necessarily at the last level of the search tree. Moreover, this result is independent of any formulation strategy used to abstract the problem.

Thus, the problem can be initially formulated as follows:

- **Goal test**: any sequence of exactly \(NxN\) different positions, obtained after performing valid knight moves.
- **Path cost**: zero
- **Operators**: perform a knight move from a previously visited square to a new unvisited square (see Fig. 8).
- **States**: any sequence of 0 to \(NxN\) visited squares.

The proposed formulation strategy is incremental rather than complete-state [5], because new valid squares are added one by one to the sequence. If the sequence has exactly \(NxN\) different squares, then a new solution is found. There could be instances where no further move is possible to an unvisited square, a situation known as a dead-end. In such a scenario, a typical search algorithm will probably enter a backtracking mode in which previously added squares are removed from the sequence, and other moves are tested. Obviously a good search algorithm needs to avoid such dead-ends, in order to minimize the search cost.

Note that a depth-first search (DFS) implementation would follow almost naturally from the above formulation, assuming that the operator is performed in sequential order. However, other more intelligent search schemes prove to be more effective than DFS, especially when specific heuristics are used to select successive operators. In section VI, this will be explored by presenting three heuristic functions.

3. General Search Algorithm

Most search algorithms can be implemented using a general search algorithm with a specific search strategy [5]. The general search algorithm basically determines the main strategy that aims to narrow the search space in an effort to find solutions, given a particular problem as input. However, it does not evaluate which nodes will be expanded and added to the search path. That is the purpose of the specific search strategy, which dictates the sequence of nodes to expand based on an evaluation function.

A node holds information associated with one level of the search tree. The most relevant information attached to a node is the state. What the state means and how it is interpreted depends on the particular problem. The set of all possible states make the state space for the problem. In addition to states, a node can optionally have other associated values that must be stored and book-kept at each level of the search tree.

Such values typically make sense in informed search schemes and are defined by the specific search strategy.

Fig. 3 shows the general search function for the knight tour problem. The variable \(Position\) is an array of bi-dimensional vectors, each representing a knight placed on the board. Thus, a node consists of a position and other optional values that depend on the search strategy. The queuing function, explained below, is the most important part since it specifies the order in which prospective nodes are selected and iterated, for each level, along the search path.

```
function GENERAL_SEARCH(Queueing-Fn)
    solution_found = FALSE

    //place 1st knight arbitrarily
    SetKnightPosition( Position[ 0] = (x_0, y_0) );
    solution_found = FALSE

    //recursion
    if (solution_found = TRUE) return 1
    if (is last node)
        solution_found = TRUE
        //SOLUTION FOUND
        else
            if (Position[ n] within range AND NOT visited
                Mark Position[ n] as visited
                SearchKnightPosition(n + 1) //recursion
                Clear Position[ n] as visited
            end loop
    end function //SetKnightPosition

end function //GENERAL_SEARCH
```

For informed search methods, the specific search strategy is defined in terms of an evaluation function. For uninformed search methods, no evaluation is performed. The purpose of the evaluation function is to minimize the search cost involved in looking for solutions. In terms of efficiency, an evaluation function is relatively better than another one if its overall search cost is lower. It will also be optimal if it is guaranteed to reach a solution in the minimum possible number of steps. In the context of the knight tour problem, an optimal solution is found when a tour is completed in exactly \(NxN\) knight moves without getting trapped in any dead-end, and hence no backtracking occurred. Hence, an optimal solution is in \(O(N^2)\).

4. Best-First Search

The three heuristics to be discussed, designed to evaluate the best square to visit next from the current node, can be implemented using a best-first search algorithm, having each prospective heuristic as the evaluation function.

```
function BEST-FIRST-SEARCH(Eval-Fn)
    returns success (TRUE) or failure (FALSE)

    inputs: Eval-Fn, an evaluation function
            Queueing-Fn a function that orders nodes by Eval-Fn

    return GENERAL-SEARCH(Queueing-Fn)
end function
```

Fig.4. Best-first search algorithm
Fig. 4 above illustrates the best-first search algorithm. The queuing function “Queueing-Fn” simply sorts, in ascending order in this case, the prospective nodes to be expanded, according to the node value returned by the evaluation function. Therefore, general search is invoked on the least-valued node first, continuing with the second-valued, and so on, up to the most-valued node, rather than going sequentially as in depth-first search. The value of a node in this context is defined by the particular heuristic, which in turn is measured in terms of its evaluation function.

5. Enumeration Problem

The goal in an enumeration knight tour problem is to find all possible tours for a given NxN board. If uninform search is used, a simple depth-first search scheme should suffice to obtain all of the solutions. However, for large boards (N > 6), the exponential state space of the problem clearly bounds the search in such a way that any brute force method will prove very inefficient.

On the other hand, informed search methods help find solutions more efficiently, but the time required for such methods to complete execution becomes more intractable as N increases, since the number of solutions grows exponentially as well. Table 1 shows the number of solutions as a function of N, and the approximate execution time.

<table>
<thead>
<tr>
<th>N: Board dimension</th>
<th>Number of solutions</th>
<th>Execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>304</td>
<td>< 1 second</td>
</tr>
<tr>
<td>6</td>
<td>524,486</td>
<td>19 minutes</td>
</tr>
<tr>
<td>7</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>8</td>
<td>< 1.305 x 10^35</td>
<td>> 1 year</td>
</tr>
</tbody>
</table>

6. Inventing Heuristics

The main reason why brute force methods like depth-first search algorithms are very inefficient is because most of the execution time is lost in expanding and backtracking nodes that will never reach a goal state. Backtracking is just the process of resuming after a failed attempt while trying to reach a goal state. Understanding why it occurs in this particular problem is the first step to avoid failed states, and when doing so, heuristic ideas come almost naturally.

In the particular context of the knight tour problem, there are two situations that may cause a sequence to prevent from completing a tour:

- *Inaccessible square*. There is an isolated square on the board impossible to visit, because all valid squares from where it is accessible have already been visited.
- *Dead-end*. There is no unvisited square that can be visited from the current square.

Fig. 5a depicts a dead-end situation that occurs after the 15th move, or node 15. The knight is about to reach a dead-end by moving to the only square available (2,1), after which no further move is possible. Fig. 5b shows an inaccessible square situation, where (2,1) is inaccessible.

![Fig. 5a. Square (2,1) is a dead-end.](image1)

It is helpful to analyze the first case. Clearly the knight at node 15, in Fig. 5a, realizes it is in a dead-end because from (2,1) there are no further available squares to move next. However, it would be desirable to detect this fact before approaching the actual dead-end, in order to prevent backtracking. By looking at node 15 in Fig. 5a, the only plausible move is (2,1) where the dead-end occurs. Again, could it have been detected earlier? To do so it is obvious that the current node needs to know in advance all the possible move options for all the squares that are accessible from it. This suggests enumerating the number of options that each prospective successor square currently has. In Fig. 5a, the only successor square from node 15 is at (2,1), and from there, the number of options is zero. This confirms that such a square is a dead-end. However, backtracking still needs to be performed. Therefore, the question arises, from which move can the dead-end be prevented? By visual inspection it is trivial to see that from node 14, the choice of square (1,3) for node 15, instead of (4,4), produced the dead-end. Fig. 6a shows the number of options for successor squares from node 14, one move from (1,3), and five moves from (4,4). This suggests that by choosing the square with most options to move, dead-ends can be prevented. Let this heuristic be h1a.

![Fig. 6a. Preventing “dead-ends.”](image2)

However, even if dead-ends were minimized by choosing the squares with most options, there is still a problem. In Fig. 6a, by choosing (4,4) for node 15, square (1,3) becomes inaccessible. Again, backing up one node from 14 and resuming the search, Fig. 6b shows the number of options for
successor squares starting from node 13. Note that if square (2,1), the one with least options, is chosen, both (2,1) and (1,3) now become accessible. Therefore, by choosing the node with least options, inaccessible squares can be prevented. Let his heuristic be h_{1b}.

Table 2: Proposed heuristics and their intended action

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>Avoids dead-ends?</th>
<th>Avoids inaccessible squares?</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{1a}: Visit square with "most" options</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>h_{1b}: Visit squares with "least" options</td>
<td>Yes, indirectly (not intentionally)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2 above summarizes the two analyzed prospective heuristics h_{1a} and h_{1b}. Note that in Fig. 6b, after choosing the square with least options at (2,1), the previous dead-end at that position (see Fig. 5a) was indirectly prevented.

7. Results of Applying Heuristics

The question arises, which heuristic is better? In theory, the last proposed heuristic in Table 2, h_{1b}, looks more promising since it seems to prevent dead-ends indirectly, in addition to inaccessible squares. The best way to check this is empirically through a test program. Such a program should receive as inputs both the dimension of the board, N, and an initial square selected by the user. It should consist of an informed search algorithm, with each proposed heuristic as the evaluation function. Each returned value, indicating the number of options that each prospective successor square currently has, will then be sorted in either descending or ascending order by a queuing function, depending on whether heuristic h_{1a} or h_{1b} is chosen, respectively. Figs. 3 and 4 show the general search and best-first search algorithms.

After running the program using heuristic h_{1a}, expanding the node with most options, ironically every single tour ends in a dead-end after about half the board is visited. Also in critical moves such as visiting a corner square before it gets inaccessible, the heuristic fails miserably since it obviously chooses other higher-valued squares. A visual inspection on Fig. 7a, where a tour sequence is generated using heuristic h_{1a}, reveals that visits tend to quickly agglomerate in the center of the board, where squares have a higher branching factor, and hence more options to move. This eventually exhausts all natural paths connecting lower-valued squares from the four corner sections. Dead-ends become more likely.

Results for heuristic h_{1b} turn out to be far more optimistic than heuristic h_{1a}. As Fig. 7b depicts, by expanding the node with least options to move, visits tend to gather at the border and corner squares initially, finally working their way to the higher-valued center squares. Note that natural paths connecting the four corners are not broken as occurs with heuristic h_{1a}. They are simply displaced to occupy the center squares where the knight has more freedom to move, and hence more chances to perform complete tours.

Performance of heuristic h_{1b} is much better than expected. Using heuristic h_{1b} as the evaluation function for a best-first search algorithm, complete tours for generic $N\times N$ boards can be obtained with ease, without backtracking. The algorithmic reasoning behind heuristics h_{1a} and h_{1b} seem to follow almost naturally after studying why dead-ends and inaccessible squares occur. It is therefore quite reasonable to expect that some other enthusiasts have thought about such practical methods to perform complete knight tours. Indeed, heuristic h_{1b} presented in this paper is actually the same practical method introduced by H. C. Warnsdorff in 1823 [6].

8. Improving Heuristics

Heuristic h_{1b} is not perfect, however. For some boards, in particular $N = \{41, 52, 59, 60, 66, 74, 79, 87, 88, 94\}$, the choice of squares suggested by the heuristic sometimes prevent the algorithm from detecting dead-ends. Unfortunately, even backtracking and resuming the recursive search on the next valued squares do not seem to keep avoiding dead-ends and thus finding complete tours. Moreover, heuristic h_{1b} seems to fail completely on very large boards, $N > 300$.

A closer inspection to heuristic h_{1b} reveals a weakness. It does not address the case when two or more successor squares have the same lowest number of options. If there are two or more lowest-valued successor squares from the current node, the heuristic simply does not contemplate which square to visit next. In the current implementation, the search algorithm chooses the first tied square found, arbitrarily, based on the order in which the knight move operators were defined, as shown in Fig. 8. However, is there some way to determine which of the tied squares is better in terms of avoiding dead-ends and inaccessible squares? This is what the next heuristic, h_2, attempts to address.

![Fig. 7a. Tour using heuristic h_{1a}.](image)

![Fig. 7b. Tour using heuristic h_{1b}.](image)

![Fig. 8. The 8 knight move operators.](image)
From the tour in Fig. 7b, it was argued that visited squares that lie near the center of the board tend to break natural paths connecting squares from the four corners of the board, while visited squares that gather near the borders have more chance of avoiding dead-ends and inaccessible squares. Therefore, the knight would have more freedom to complete a tour on the last unvisited squares from the center of the board, as Fig. 7b shows. The same reasoning can be argued to break lowest-valued successor squares that are tied. Formally, heuristic h2 will implement h1b, and in addition, in case of tie it will choose the lowest-valued square nearest to any of the four corners of the board, independently of N.

When improved heuristic h2 is used, complete tours can now be constructed without backtracking in $O(N^2)$, including boards for which heuristic h1b previously failed, and in very large boards as well. The only limit for constructing complete knight tours using heuristic h2 seems to be the available memory. Table 3 summarizes the results for heuristics h1a, h1b, and h2 according to the dimension of the board, N.

Table 3. Results for heuristics h1a, h1b, and h2 vs. N.

<table>
<thead>
<tr>
<th>N</th>
<th>Heuristic h1a</th>
<th>Heuristic h1b</th>
<th>Heuristic h2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 4</td>
<td>Impossible</td>
<td>Impossible</td>
<td>Impossible</td>
</tr>
<tr>
<td>5 – 40</td>
<td>Fails</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>41</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
<tr>
<td>42 – 51</td>
<td>Fails</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>52</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
<tr>
<td>53 – 58</td>
<td>Fails</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>59 – 60</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
<tr>
<td>61 – 65</td>
<td>Succeeds</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>66</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
<tr>
<td>67 – 73</td>
<td>Succeeds</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>74</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
<tr>
<td>75 – 78</td>
<td>Succeeds</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>79</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
<tr>
<td>80 – 86</td>
<td>Succeeds</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>87 – 88</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
<tr>
<td>89 – 93</td>
<td>Succeeds</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>94</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
<tr>
<td>95 – 100</td>
<td>Succeeds</td>
<td>Succeeds</td>
<td>Succeeds</td>
</tr>
<tr>
<td>…</td>
<td>Fails</td>
<td>?</td>
<td>Succeeds</td>
</tr>
<tr>
<td>> 300</td>
<td>Fails</td>
<td>Fails</td>
<td>Succeeds</td>
</tr>
</tbody>
</table>

Heuristic h1a always fails to obtain solutions for any N that is input. However, it is an interesting case of study since it shows that the most promising heuristic not always produces the expected result. In this case, it fails completely from narrowing the search space for the knight tour problem.

Heuristic h1b is able to find complete tours in most cases, but fails to obtain solutions on some particular boards, as Table 3 shows. There does not seem to be any particular pattern or correlation that describes the behavior of N when heuristic h1b fails. However, somewhere between 100 and 300, heuristic h1b seems to fail, invariably. Again, this presumes the operator order depicted in Fig. 8.

On the other hand, heuristic h2 always succeeds for N between 5 and 300. The actual upper bound of N, for which heuristic h2 fails, if it ever does, is unknown. However, for any arbitrarily selected N that is input, between 300 and 600, heuristic h2 always returns a solution in $O(N^2)$.

9. Conclusions

In this paper, the uninformed depth-first search method was implemented to enumerate knight tour solutions. While this approach is suitable for small boards, the problem is obviously intractable for bigger boards, $N > 6$, 7, or larger, due to the exponential complexity associated not only with the search space of the problem (Table 1), but also one that is inherent to the number of solutions themselves.

Three heuristics were presented and discussed in detail to find any complete tour on any given NxN board. Heuristic h1a, the Warnsdorff method, is a noticeable improvement over h1a, becoming able to perform complete tours on relatively large boards. However, the heuristic fails from detecting dead-ends on some particular boards, such as the ones depicted in Table 3. For these particular boards, the heuristic enters backtracking mode, after which it does not converge into any solution rapidly. The heuristic seems to fail completely on very large boards, about $N > 300$.

Finally, heuristic h2 addresses a limitation of h1b by choosing the next lowest-valued square that is closer to any of the four corners of the board, in case of tie. Heuristic h2 is able to find complete tours in $O(N^2)$, being available memory the only practical limitation.

10. References